UID constrains the usage of topic drop in German: experimental and corpus linguistic findings

Lisa Schäfer, Robin Lemke, Ingo Reich & Heiner Drenhaus

Saarland University SFB 1102

Experimental and Corpus-based Approaches to Ellipsis (ECBAE) 2020

July 15, 2020

Topic drop

Topic drop in German

(Reis, 1982; Ross, 1982; Fries, 1988)

- preverbal constituent omitted from a declarative V2 sentence (1)
- sentence starts superficially with the finite verb

(1) Δ_{lch} Bin unterwegs Δ_{l} Am on.my.way '(I) am on my way' 18:30

Research question

When do speakers use topic drop?

Research question

When do speakers use topic drop?

Hypothesis

Topic drop is used when the omitted constituent is **predictable** from context and can be **easily recovered**.

Research question

When do speakers use topic drop?

Hypothesis

Topic drop is used when the omitted constituent is **predictable** from context and can be **easily recovered**.

Factors according to previous literature

- a) grammatical person: 1SG more salient
- b) verbal inflection: verb marked for person
- c) topicality: topic more salient

(Auer, 1993; Imo, 2014)

(Auer, 1993)

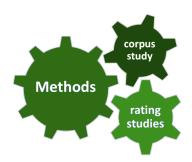
(Helmer, 2017)

Research question

When do speakers use topic drop?

Hypothesis

Topic drop is used when the omitted constituent is **predictable** from context and can be **easily recovered**.



Factors according to previous literature

- a) grammatical person: 1SG more salient
- b) verbal inflection: verb marked for person
- c) topicality: topic more salient
- ⇒ previous accounts based on single factor

- ightarrow corpus, experiments
- ightarrow corpus, experiments
 - ightarrow experiments
- \rightarrow test factors systematically

Hypothesis: Topic drop is used

when the omitted element is **predictable** from context and can be **easily recovered**.

Factors according to previous literature

- a) grammatical person: 1SG more salient
- b) verbal inflection: verb marked for person
- c) topicality: topic more salient
- ⇒ previous accounts based on single factor

- ightarrow corpus, experiments
- ightarrow corpus, experiments
 - ightarrow experiments
- ightarrow test factors systematically

Hypothesis: Topic drop is used

when the omitted element is **predictable** from context and can be **easily recovered**.

Factors according to previous literature

- a) grammatical person: 1SG more salient
- b) verbal inflection: verb marked for person
- c) topicality: topic more salient
- ⇒ previous accounts based on single factor

- o corpus, experiments
- ightarrow corpus, experiments
 - ightarrow experiments
- ightarrow test factors systematically

Account based on information theory

- provides an adequate multifactorial model
- traces back the several factors to recoverability
- explains additional effects of verb surprisal

Uniform information density (UID) hypothesis

(Levy and Jaeger, 2007)

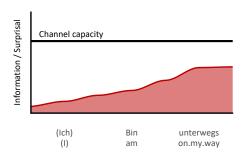
Speakers tend to distribute information / surprisal, defined as $-\log_2 p(word|context)$ (Shannon, 1948) and indexing processing effort (Hale, 2001), uniformly across utterances, not exceeding or falling below channel capacity.

Uniform information density (UID) hypothesis

(Levy and Jaeger, 2007)

Speakers tend to distribute information / surprisal, defined as $-\log_2 p(word|context)$ (Shannon, 1948) and indexing processing effort (Hale, 2001), uniformly across utterances, not exceeding or falling below channel capacity.

UID predicts that topic drop is more felicitous...

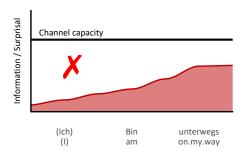


Uniform information density (UID) hypothesis

(Levy and Jaeger, 2007)

Speakers tend to distribute information / surprisal, defined as $-\log_2 p(word|context)$ (Shannon, 1948) and indexing processing effort (Hale, 2001), uniformly across utterances, not exceeding or falling below channel capacity.

UID predicts that topic drop is more felicitous...

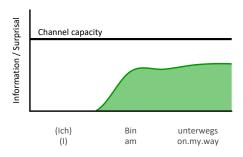


Uniform information density (UID) hypothesis

(Levy and Jaeger, 2007)

Speakers tend to distribute information / surprisal, defined as $-\log_2 p(word|context)$ (Shannon, 1948) and indexing processing effort (Hale, 2001), uniformly across utterances, not exceeding or falling below channel capacity.

UID predicts that topic drop is more felicitous...

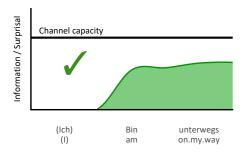


Uniform information density (UID) hypothesis

(Levy and Jaeger, 2007)

Speakers tend to distribute information / surprisal, defined as $-\log_2 p(word|context)$ (Shannon, 1948) and indexing processing effort (Hale, 2001), uniformly across utterances, not exceeding or falling below channel capacity.

UID predicts that topic drop is more felicitous...

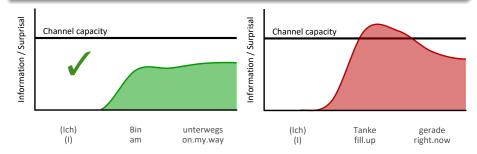


Uniform information density (UID) hypothesis

(Levy and Jaeger, 2007)

Speakers tend to distribute information / surprisal, defined as $-\log_2 p(word|context)$ (Shannon, 1948) and indexing processing effort (Hale, 2001), uniformly across utterances, not exceeding or falling below channel capacity.

- $_1$...when the omitted expression is predictable \Rightarrow avoid surprisal **minima**
- $_2$...when the initial verb is more predictable \Rightarrow avoid surprisal **maxima**

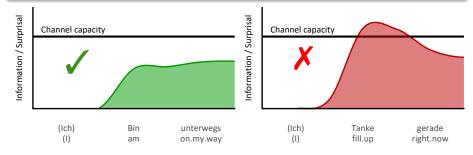


Uniform information density (UID) hypothesis

(Levy and Jaeger, 2007)

Speakers tend to distribute information / surprisal, defined as $-\log_2 p(word|context)$ (Shannon, 1948) and indexing processing effort (Hale, 2001), uniformly across utterances, not exceeding or falling below channel capacity.

- $_1$...when the omitted expression is predictable \Rightarrow avoid surprisal **minima**
- $_2$...when the initial verb is more predictable \Rightarrow avoid surprisal **maxima**

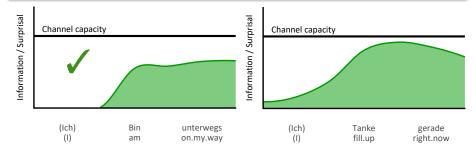


Uniform information density (UID) hypothesis

(Levy and Jaeger, 2007)

Speakers tend to distribute information / surprisal, defined as $-\log_2 p(word|context)$ (Shannon, 1948) and indexing processing effort (Hale, 2001), uniformly across utterances, not exceeding or falling below channel capacity.

- $_1$...when the omitted expression is predictable \Rightarrow avoid surprisal **minima**
- $_2$...when the initial verb is more predictable \Rightarrow avoid surprisal **maxima**

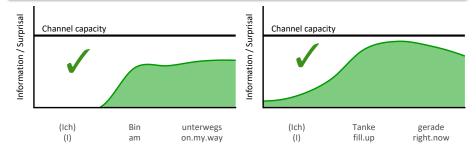


Uniform information density (UID) hypothesis

(Levy and Jaeger, 2007)

Speakers tend to distribute information / surprisal, defined as $-\log_2 p(word|context)$ (Shannon, 1948) and indexing processing effort (Hale, 2001), uniformly across utterances, not exceeding or falling below channel capacity.

- $_1$...when the omitted expression is predictable \Rightarrow avoid surprisal **minima**
- $_2$...when the initial verb is more predictable \Rightarrow avoid surprisal **maxima**



- $_1$...when the omitted expression is predictable \Rightarrow avoid surprisal **minima**
- $_2$...when the initial verb is more predictable \Rightarrow avoid surprisal maxima

UID predicts that topic drop is more felicitous...

- 1 ...when the omitted expression is predictable ⇒ avoid surprisal minima
- predictability / recoverability influenced by
 - a) grammatical person: 1SG more salient
 - b) verbal inflection: verb marked for person
 - c) topic continuity: topic more salient

(Auer, 1993; Imo, 2014)

(Auer, 1993)

(Helmer, 2017

2 ...when the initial verb is more predictable ⇒ avoid surprisal maxima

UID predicts that topic drop is more felicitous...

- 1 ...when the omitted expression is predictable ⇒ avoid surprisal minima
- predictability / recoverability influenced by
 - a) grammatical person: 1SG more salient
 - ⇒ avoid surprisal minima
 - b) verbal inflection: verb marked for person
 - ⇒ topic drop easier to recover
 - c) topic continuity: topic more salient
 - ⇒ avoid surprisal minima

(Auer, 1993; Imo, 2014)

(Auer, 1993)

(Helmer, 2017

2 ...when the initial verb is more predictable ⇒ avoid surprisal maxima

UID predicts that topic drop is more felicitous...

- 1 ...when the omitted expression is predictable ⇒ avoid surprisal minima
- predictability / recoverability influenced by
 - a) grammatical person: 1SG more salient

⇒ avoid surprisal minima

b) verbal inflection: verb marked for person

⇒ topic drop easier to recover

c) topic continuity: topic more salient

⇒ avoid surprisal minima

(Auer, 1993; Imo, 2014)

(Auer, 1993)

(Helmer, 2017

- UID account provides unifying account to the usage of topic drop
- 2 ...when the initial verb is more predictable ⇒ avoid surprisal maxima

- $_1$...when the omitted expression is predictable \Rightarrow avoid surprisal **minima**
- 2 ...when the initial verb is more predictable \Rightarrow avoid surprisal **maxima**
- surprisal of the following verb as predictor
- ⇒ UID account provides additional explanatory power

- 1 ...when the omitted expression is predictable \Rightarrow avoid surprisal **minima**
- ⇒ UID account provides unifying account to the usage of topic drop
- 2 ...when the initial verb is more predictable \Rightarrow avoid surprisal maxima
- ⇒ UID account provides additional explanatory power

Corpus study

Corpus study – Overview

Research question

Do grammatical person, verbal inflection and verb surprisal influence the frequency of topic drop?

Corpus study – Overview

Research question

Do grammatical person, verbal inflection and verb surprisal influence the frequency of topic drop?

Hypotheses: Topic drop is **more frequent** ...

PERSON ... with 1SG compared to 3SG

SURPRISAL ... when the initial verb is more predictable

INFLECTION ... before inflectionally marked compared to syncretic verbs

Corpus study – Overview

Research question

Do grammatical person, verbal inflection and verb surprisal influence the frequency of topic drop?

Hypotheses: Topic drop is **more frequent** ...

PERSON ... with 1SG compared to 3SG

SURPRISAL ... when the initial verb is more predictable

INFLECTION ... before inflectionally marked compared to syncretic verbs

Data set

- basis: text messages subcorpus of FraC fragment corpus (Horch and Reich, 2017)
- only 1SG and 3SG subjects, 290 topic drops and 162 full forms
- verb lemma, verbal inflection (explicitly marked or not), unigram surprisal per verb lemma from language model trained on text messages subcorpus (SRILM toolkit (Stolcke, 2002))

Corpus study - Results

Analysis

logistic regressions in R

- (R Core Team, 2019)
- predict topic drop from PERSON (1SG vs. 3SG), SURPRISAL (numeric), INFLECTION (syncretic vs. marked) and all two-way interactions

Corpus study – Results

Analysis

logistic regressions in R

(R Core Team, 2019)

predict topic drop from Person (1SG vs. 3SG), SURPRISAL (numeric), INFLECTION (syncretic vs. marked) and all two-way interactions

Results

Predictor	Estimate	SE	χ^{2}	p-value	
PERSON	0.64	0.12	27.63	< 0.001	***
SURPRISAL	-0.23	0.06	14.21	< 0.001	***
INFLECTION:SURPRISAL	0.14	0.06	4.86	< 0.05	*

Hypotheses: Topic drop is more frequent ...

PERSON SURPRISAL

... with 1SG compared to 3SG

... when the initial verb is more predictable

INFLECTION

... before inflectionally marked compared to syncretic verbs

Corpus study – Discussion

Topic drop is **more frequent** ...

PERSON ✓ ... with 1SG compared to 3SG

SURPRISAL ... when the initial verb is more predictable

INFLECTION ? ... before inflectionally marked compared to syncretic verbs

Corpus study – Discussion

Topic drop is more frequent ...

PERSON

... with 1SG compared to 3SG

1SG topic drop > 3SG topic drop

- strategy to avoid surprisal minima in sentence-initial position
- \Rightarrow 1SG (n=343) in general more frequent than 3SG (n=99)

SURPRISAL

... when the initial verb is more predictable

Inflection :

... before inflectionally marked compared to syncretic verbs

Corpus study – Discussion

Topic drop is **more frequent** ...

PERSON ✓ ... with 1SG compared to 3SG

SURPRISAL ... when the initial verb is more predictable

 $\text{higher verb surprisal} \rightarrow \text{---topic drop}$

strategy to avoid surprisal maxima in sentence-initial position

INFLECTION ? ... before inflectionally marked compared to syncretic verbs

Corpus study – Discussion

Topic drop is **more frequent** ...

```
PERSON ✓ ... with 1SG compared to 3SG
```

```
SURPRISAL ... when the initial verb is more predictable
```

INFLECTION ? ... before inflectionally marked compared to syncretic verbs

```
distinct inflection + higher surprisal 
ightarrow ++ topic drop
```

- topic drop more likely with higher surprisal when verb is inflectionally marked
- ⇒ surprisal maximum less severe when topic drop more easily recoverable

Experiments

Experiments – Overview

Research question

Do grammatical person, verbal inflection and topicality influence the acceptability of topic drop?

Experiments – Overview

Research question

Do grammatical person, verbal inflection and topicality influence the acceptability of topic drop?

Hypotheses: Topic drop is **more acceptable** ...

PERSON ... with 1SG compared to 3SG

INFLECTION ... with 1SG **only** for inflectionally marked full verbs

TOPICALITY ... when the omitted constituent has been set as topic before

Experiments – Overview

Research question

Do grammatical person, verbal inflection and topicality influence the acceptability of topic drop?

Hypotheses: Topic drop is **more acceptable** ...

PERSON ... with 1SG compared to 3SG

INFLECTION ... with 1SG **only** for inflectionally marked full verbs

TOPICALITY ... when the omitted constituent has been set as topic before

Experiment 1	Experiment 2		
► tests effects of grammatical person and topicality	 tests effects of grammatical person, topicality and verbal inflection 		
uses utterances with inflectionally marked full verbs	uses utterances with syncretic modal verbs		

Experiment 1 full verbs

Experiment 1 – Set-up

Acceptability rating study

- ▶ 2 × 2 × 2 design: OMISSION (topic drop vs. full form) × PERSON (1SG vs. 3SG) × TOPICALITY (topic continuity vs. topic shift)
- 24 items with full verbs like (1) + 60 fillers presented as text messaging dialogues
- 43 native speakers of German recruited from Clickworker
- rating of last utterance on 7-point Likert scale (7 = completely natural)

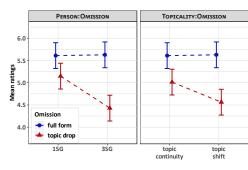
- (1) A: 'What's new?'
 - a. B: Am Samstag geht Julia mit mir essen. (Sie) lädt mich diesmal ein.
 B: On Saturday goes Julia with me eat. (She) invites₁ me this.time invites₂.
 - 'B: On Saturday Julia dines out with me.
 - (She) invites me this time.' [topic continuity | 3SG | topic drop (full form)]

Analysis

- cumulative link mixed models (CLMMs) in R (Christensen, 2019)
- full model with OMISSION, PERSON, TOPICALITY and all two-way interactions plus full random effects structure (Barr et al., 2013)

Analysis

- cumulative link mixed models (CLMMs) in R (Christensen, 2019)
- full model with OMISSION, PERSON, TOPICALITY and all two-way interactions plus full random effects structure (Barr et al., 2013)

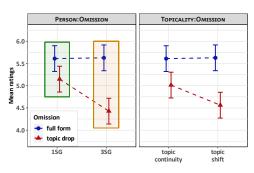


Mean ratings and 95 % CIs for experiment 1 $\,$

Predictor	Estimate	SE	χ^{2}	p-value
OMISSION	-1.45	0.38	30.74	< 0.001 ***
PERSON:OMISSION	1.13	0.25	20.74	< 0.001 ***
TOPICALITY:OMISSION	0.69	0.25	7.97	< 0.01 **

Analysis

- cumulative link mixed models (CLMMs) in R (Christensen, 2019)
- full model with OMISSION, PERSON, TOPICALITY and all two-way interactions plus full random effects structure (Barr et al., 2013)

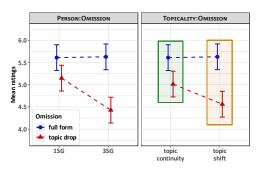


Mean ratings and 95 % CIs for experiment 1 $\,$

Predictor	Estimate	SE	χ^{2}	p-value
OMISSION	-1.45	0.38	30.74	< 0.001 ***
PERSON:OMISSION	1.13	0.25	20.74	< 0.001 ***
TOPICALITY:OMISSION	0.69	0.25	7.97	< 0.01 **

Analysis

- cumulative link mixed models (CLMMs) in R (Christensen, 2019)
- full model with OMISSION, PERSON, TOPICALITY and all two-way interactions plus full random effects structure (Barr et al., 2013)



Mean ratings and 95 % CIs for experiment 1 $\,$

Predictor	Estimate	SE	χ^{2}	p-value
OMISSION	-1.45	0.38	30.74	< 0.001 ***
PERSON:OMISSION	1.13	0.25	20.74	< 0.001 ***
TOPICALITY:OMISSION	0.69	0.25	7.97	< 0.01 **

Experiment 1 – Discussion

Topic drop is more acceptable ...

PERSON

... with 1SG compared to 3SG

TOPICALITY

... when the omitted constituent has been set as topic before

Experiment 1 – Discussion

Topic drop is **more acceptable** ...

PERSON

... with 1SG compared to 3SG

1SG topic drop > 3SG topic drop

► 1SG topic drop more frequent (see corpus study) and more acceptable ⇒ in line with UID account and previous literature

TOPICALITY

... when the omitted constituent has been set as topic before

Experiment 1 – Discussion

Topic drop is **more acceptable** ...

PERSON

... with 1SG compared to 3SG

TOPICALITY ... when the omitted constituent has been set as topic before

topic continuity ightarrow ++ topic drop

- ▶ in line with UID account
 - \Rightarrow topic more predictable \Rightarrow lower surprisal \Rightarrow topic drop more acceptable

Experiment 2 modal verbs

Experiment 2 – Set-up

Acceptability rating study

- ▶ 2 × 2 × 2 design: OMISSION (topic drop vs. full form) × PERSON (1SG vs. 3SG) × TOPICALITY (topic continuity vs. topic shift)
 - ▶ 24 items with modal verbs ?? + 60 fillers presented as text messaging dialogues
 - 48 native speakers of German recruited from Clickworker
- rating of last utterance on 7-point Likert scale (7 = completely natural)

Experiment 1

(2) (Sie) **lädt** mich ein. (She) invites₁ me invites₂

- (3) (Ich) lade sie ein.
 - (I) invite₁ her invite₂

Experiment 2

(4) (Sie) **möchte** mich einladen. (She) wants me invite

- (5) (Ich) möchte sie einladen.
 - (I) want her invite

Experiment 2 – Set-up

Acceptability rating study

- ▶ 2 × 2 × 2 design: OMISSION (topic drop vs. full form) × PERSON (1SG vs. 3SG) × TOPICALITY (topic continuity vs. topic shift)
- ▶ 24 items with modal verbs ?? + 60 fillers presented as text messaging dialogues
- 48 native speakers of German recruited from Clickworker
- rating of last utterance on 7-point Likert scale (7 = completely natural)

Experiment 1

(2) (Sie) **lädt** mich ein. (She) invites₁ me invites₂

- (3) (Ich) lade sie ein.
 - (I) invite₁ her invite₂

Experiment 2

(4) (Sie) möchte mich einladen. (She) wants me invite

- (Ich) **möchte** sie einladen.
- (I) want her invite

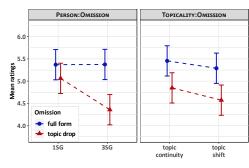
(5)

Analysis

- cumulative link mixed models (CLMMs) in R (Christensen, 2019)
- ► full model with OMISSION, PERSON, TOPICALITY and all two-way interactions plus full random effects structure (Barr et al., 2013)

Analysis

- cumulative link mixed models (CLMMs) in R (Christensen, 2019)
- full model with OMISSION, PERSON, TOPICALITY and all two-way interactions plus full random effects structure (Barr et al., 2013)

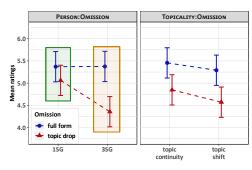


Mean ratings and 95 % CIs for experiment 2

Predictor	Estimate	SE	χ^{2}	p-value	
OMISSION	-0.63	0.25	21.22	< 0.001	***
PERSON:OMISSION	-1.02	0.24	18.72	< 0.001	***
TOPICALITY:OMISSION	0.32	0.23	1.82	0.18	

Analysis

- cumulative link mixed models (CLMMs) in R (Christensen, 2019)
- full model with OMISSION, PERSON, TOPICALITY and all two-way interactions plus full random effects structure (Barr et al., 2013)

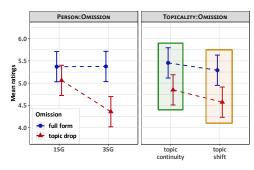


Mean ratings and 95 % CIs for experiment 2

Predictor	Estimate	SE	χ^{2}	p-value	
OMISSION	-0.63	0.25	21.22	< 0.001	***
PERSON:OMISSION	-1.02	0.24	18.72	< 0.001	***
TOPICALITY:OMISSION	0.32	0.23	1.82	0.18	

Analysis

- cumulative link mixed models (CLMMs) in R (Christensen, 2019)
- full model with OMISSION, PERSON, TOPICALITY and all two-way interactions plus full random effects structure (Barr et al., 2013)



Mean ratings and 95 % CIs for experiment 2

Predictor	Estimate	SE	χ^{2}	p-value	
OMISSION	-0.63	0.25	21.22	< 0.001	***
PERSON:OMISSION	-1.02	0.24	18.72	< 0.001	***
TOPICALITY:OMISSION	0.32	0.23	1.82	0.18	

Experiment 2 – Discussion

Topic drop is more acceptable ...

PERSON 🗸

/

... with 1SG compared to 3SG

Inflection

N 🖍 .

... with 1SG only for inflectionally marked full verbs

TOPICALITY X

 \ldots when the omitted constituent has been set as topic before

Experiment 2 – Discussion

Topic drop is **more acceptable** ...

PERSON INFLECTION

... with 1SG compared to 3SG

... with 1SG only for inflectionally marked full verbs

1SG topic drop > 3SG topic drop

1SG topic drop more acceptable even for syncretic modal verbs ⇒ preference for topic drop of 1SG does not hinge on distinct verbal inflection

TOPICALITY

... when the omitted constituent has been set as topic before

Experiment 2 – Discussion

Topic drop is more acceptable ...

```
PERSON ... with 1SG compared to 3SG
```

INFLECTION X ... with 1SG only for inflectionally marked full verbs

TOPICALITY X ... when the omitted constituent has been set as topic before

```
topic continuity + distinct inflection \rightarrow ++ topic drop
```

- unexpected given exp. 1
 - ⇒ combination of topicality and distinct verbal inflection in exp. 1
 - ⇒ topic continuity alone in exp. 2 not enough to facilitate recoverability

General discussion

Summary

Factor	Observation	Corpus	Experiments
PERSON	1SG topic drop > 3SG topic drop	1	✓
INFLECTION	distinct inflection + higher surprisal / topic continuity \rightarrow ++ topic drop	1	✓
SURPRISAL	higher verb surprisal $ ightarrow$ topic drop	1	_
TOPICALITY	topic continuity + distinct inflection → ++ topic drop	_	✓

Support for an information-theoretic account to topic drop

- ⇒ UID provides unifying explanation to usage of topic drop
- ⇒ interaction of several factors facilitates recovering the omitted constituent
- ⇒ additional explanatory power through accounting for effects of verb surprisal

References

- Auer, Peter (1993). "Zur Verbspitzenstellung im gesprochenen Deutsch". In: *Deutsche Sprache* 23, pp. 193–222.
- Barr, Dale J. et al. (2013). "Random Effects Structure for Confirmatory Hypothesis Testing: Keep It Maximal". In: *Journal of Memory and Language* 68.3, pp. 255–278.
- Christensen, R. H. B. (2019). Ordinal—Regression Models for Ordinal Data.
- Fries, Norbert (1988). "Über das Null-Topik im Deutschen". In: *Sprache & Pragmatik* 3. Ed. by Inger Rosengren, pp. 19–49.
- Hale, John (2001). "A Probabilistic Earley Parser as a Psycholinguistic Model". In: Second Meeting of the North American Chapter of the Association for Computational Linguistics on Language Technologies. NAACL. Pittsburgh, Pennsylvania: Association for Computational Linguistics, pp. 159–166.
- Helmer, Henrike (2017). "Analepsen mit Topik-Drop. Zur Notwendigkeit einer diskurssemantischen Perspektive". In: *Zeitschrift für germanistische Linguistik* 45.1, pp. 1–39.
- Horch, Eva and Ingo Reich (2017). "The Fragment Corpus (FraC)". In: *Proceedings of the 9th International Corpus Linguistics Conference*. International Corpus Linguistics Conference. Birmingham (UK), pp. 392–393.

References

- Imo, Wolfgang (2014). "Elliptical Structures as Dialogical Resources for the Management of Understanding". In: *Grammar and Dialogism*. Ed. by Susanne Günthner et al. Berlin; München; Boston: De Gruyter.
- Levy, Roger and T. Florian Jaeger (2007). "Speakers Optimize Information Density through Syntactic Reduction". In: *Advances in Neural Information Processing Systems* 19. Ed. by Bernhard Schlökopf et al. Vol. 19. The MIT Press, pp. 849–856.
- R Core Team (2019). R: A Language and Environment for Statistical Computing. Vienna, Austria.
- Reis, Marga (1982). "Zum Subjektbegriff im Deutschen". In: Satzglieder im Deutschen: Vorschläge zur syntaktischen, semantischen und pragmatischen Fundierung. Ed. by Werner Abraham. Studien zur deutschen Grammatik 15. Tübingen: G. Narr, pp. 171–211.
- Ross, John Robert (1982). "Pronoun Deleting Processes in German". (San Diego, California).
- Shannon, C. E. (1948). "A Mathematical Theory of Communication". In: *Bell System Technical Journal* 27.4, pp. 623–656.

References

Stolcke, Andreas (2002). "SRILM – An Extensible Language Modeling Toolkit". In: *Proceedings of the International Conference on Spoken Language Processing*. Vol. 2. Denver, CO, pp. 901–904.