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1 Introduction

Recent work on paradigm organization has focused on the question of how speakers can deduce
the complete paradigm of a lexeme given that they only encounter a limited number of inflected
forms of that lexeme (Ackerman et al., 2009). This is also known as the paradigm cell filling
problem (PCFP). These studies have proposed entropy (Shannon, 1948) as a measurement of
paradigm complexity/predictability. The basic idea is that one can calculate the conditional
entropy between two cells of a paradigm, which measures the predictability between cells (i.e.
how much information does Cell 1 provide about Cell 2 of a paradigm). Bonami & Beniamine
(2016) have even expanded this approach to work for multiple cells.

Entropy-based approaches have a serious of limitations, however. First, entropy is not a
normalized metric, which makes it unreliable for comparing different systems/languages. Sec-
ond, many studies have convincingly shown that the inflection class of a lexeme is predictable
from its phonology and semantics (Bybee & Slobin, 1982; Skousen, 1992; Eddington, 2002;
Matthews, 2005; Blevins et al., 2017), which is information that entropy cannot easily take
into account.

Using the Russian nominal inflection system as an example, I will argue that analogical
classification (i.e. class assignment on the basis of similarity) offers a convincing solution
to the PCFP, and that accuracy metrics are a better measurement of predictability/paradigm
complexity than entropy.

1.1 Materials and methodology

From the Grammatical Dictionary of Russian by Zaliznyak (1977), I extracted all nouns (43412)
with their complete paradigm (including the prepositional case). I then converted the extracted
forms to a phonological transcription using epitran (Mortensen et al., 2018). This phonological
transcription is not perfect but it is a reasonable approximation of the Russian system. For the
present study I did not consider stress but this feature could be easily included into the models.

Many accounts of Russian nominal inflection have been proposed in the literature, each
suggesting a different analysis of the inflection classes found in the Russian system (Fraser
& Corbett, 1995, for a well known example). To sidestep these discussions, I extracted the
inflection class of each noun automatically with a surface-based method. The method is as
follows:

1. find the non-continuous phonological sub-sequence common to all cells in the paradigm
of a lexeme (from now on the stem),

2. remove this sub-sequence from each cell. In cases of discontinuous sub-sequences add a
separation mark (-),

3. the result in each cell is the marker for that cell,

4. the inflection class of the lexeme is the set of markers for all cells.

Because this method makes no assumptions about underlying representations, it is very
conservative and thus it produces the maximum possible number of inflection classes. As an
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Cell form marker form marker
NoM flirma -a firmi -i

GEN  firmi -i fiirm -0

DAT firm'e e firmam -am
Acc firmu -u firmi -i

INS  flirmoj; firmou -oj; -ou firmami -am’i
PRE firm'e e fiirmax -ax

Table 1: Markers for ¢pupma.

example we consider the lexeme ¢upma (‘firm’). The phonological transcription of ¢pupma is
fiirma, the longest common substring (stem) is firm, and the resulting markers are in Table 1.

the analogical models in the next section consider both phonological and semantic infor-
mation of the stem. To include semantic information I used the pre-trained semantic vectors
provided by Kutuzov & Kuzmenko (2017) using word2vec.!. To match a lexeme to a semantic
vector I used the NOM.SG cell. From the dataset I only kept those nouns for which there was a
semantic vector.

In order balance the dataset I only considered 1000 nouns for each class and removed all
nouns belonging to classes with fewer than 20 nouns. Limiting the maximum number of nouns
to 1000 helps the model avoid overestimating a couple of very frequent classes. The final
dataset contained 17275 nouns, with 79 different inflection classes. This step also removes
certain errors in the inflection class induction, as well ass irregular/suppletive forms.

On the resulting dataset I trained several analogical models using a multilayer perceptron
following Guzman Naranjo (2019).2 For every cell in the paradigm I trained models predicting
that cell from: (i) one other cell, (ii) two other cells, (iii) one cell and stem information,® (iv)
and two cells and stem information.

For evaluation I used accuracy because this intuitively corresponds to our intuition of what
predictability means Using Kappa scores or any other similar metric would also work. The
important point is that accuracy metrics are normalized and therefore allow for comparisons
across different models (even across different systems and languages).

More precisely the ruwikiruscorpora-func_upos_skipgram_300_5_2019 semantic vector data-set downloaded
http://rusvectores.org/en/models/, accessed 17.06.2019.

2Each model had three hidden layers (with n*4, n*2 and n neurons respectively, where n = number of classes)
with tanh activation. For all models, the learning rate was kept at 0.001, the momentum at 0.8 and dropout at 1.
The models were trained with an Nvidia Titan Xp donated by the NVIDIA Corporation.

3The stem information consisted of the last four segments of the stem plus the semantic information in the
semantic vectors (only looking at the nominative singular form).
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Predictor
Predicted NOM.SG GEN.SG DAT.SG ACC.SG INS.SG PRE.SG NOM.PL GEN.PL DAT.PL ACC.PL INS.PL PRE.PL

NOM.SG 1 0.77 0.77 0.97 0.83 0.47 0.56 0.79 0.46 0.64 046 0.46
GEN.SG 0.7 1 0.89 0.7 0.84 0.63 0.63 0.74 0.57 0.73 0.57 0.57
DAT.SG  0.77 0.9 1 0.78 0.9 0.64 0.61 0.71 0.58 0.71 0.58 0.58
Acc.sG  0.82 0.61 0.61 1 0.7 0.41 0.48 0.64 0.4 0.66 04 0.4
INS.SG 0.77 0.76 0.77 0.75 1 0.51 0.52 0.74 0.44 0.61 0.44 0.44
PRE.SG  0.62 0.67 0.77 0.6 074 1 0.68 0.71 0.55 0.72 0.55 0.55
NOM.PL  0.52 0.67 0.58 0.52 0.57 0.6 1 0.64 0.38 0.89 0.38 0.38
GEN.PL  0.67 0.66 0.62 0.65 0.67 0.5 0.54 1 0.4 0.67 04 0.4
DAT.PL  0.97 0.99 1 0.97 099 099 1 0.96 1 097 099 0.99
AcCc.PL 041 0.51 0.42 0.51 046 042 0.71 0.48 0.24 1 0.24 0.25
INS.PL 0.97 0.99 1 0.97 099 099 1 0.96 0.99 0.97 1 0.99
PRE.PL 0.97 1 1 0.97 099 099 1 0.96 0.99 097 099 1

Table 2: Cell predictability without stem information.

1.2 Results

Table 2 shows the accuracy score for the model predicting each cell using only one other cells
as predictor. This result is comparable to the use of entropy to measure implicational relations
between cells of a paradigm. This table shows that some cells in the paradimg can perfectly
predict other cells. For example, DAT.SG completely predicts DAT.PL. Similarly, these results
show that the ACC.SG cell is the best overall predictor of other cells in the paradigm.

However, it is also clear that most cells are not completely predictable from only one other
cell. Table 3 shows how the results change once the analogical models also consider the infor-
mation in the stem of the nouns. The effect is a very clear improvement.

Predictor
Predicted NOM.SG GEN.SG DAT.SG ACC.SG INS.SG PRE.SG NOM.PL GEN.PL DAT.PL ACC.PL INS.PL PRE.PL

NOM.SG 1 0.99 0.99 1 099 098 0.98 098 098 098 098 0.98
GEN.SG  0.98 1 0.99 0.98 099 098 0.98 098 097 098 097 097
DAT.SG  0.99 1 1 0.99 1 0.99 0.99 099 098 099 098 0.98
ACC.sG  0.96 0.95 0.95 1 094 094 0.93 094 093 098 093 0.93
INS.SG 0.98 0.98 0.98 0.98 1 097 0.97 097 097 097 097 0.96
PRE.SG  0.99 1 1 0.99 1 1 0.99 099 099 099 099 0.99
NOM.PL  0.99 0.99 0.99 0.99 099 099 1 0.99  0.99 1 0.99 0.99
GEN.PL  0.99 0.98 0.98 0.99 099 0.98 0.98 1 097 099 097 0.97
DAT.PL 1 1 1 1 1 1 1 0.99 1 1 1 1
Acc.pL 0.93 0.92 0.92 0.96 093 0.9 0.92 092 0.9 1 0.9 0.9
INS.PL 1 1 1 1 1 1 1 1 1 1 1 1
PRE.PL 1 1 1 1 1 1 1 0.99 1 1 1 1

Table 3: Cell predictability including stem information.

The first thing to notice is that all cells (except those which were already at 1) in Table 3
have accuracy scores higher than the corresponding cells in Table 2. Seen in absolute terms,
we can say that just knowing one form of a Russian noun (including the stem) is enough to give
almost perfect predictive accuracy for 7 cells (INS.PL, INS.SG, NOM.PL, NOM.SG, PRE.PL, PRE.SG
and DAT.PL), it gives a reasonable certainty for three cells (DAT.SG, GEN.PL and GEN.SG) and
it gives a some certainty for the remaining two (ACC.PL and ACC.SG). It is an interesting result
that these two final cells, ACC.SG and ACC.PL, are the hardest to predict from the other cells
and at the same time ACC.SG is the best predictor of other cells in average.

An important point is that not all cells increased in their predictability by the same amount.



While the predictability of ACC.PL from GEN.PL increased from 0.64 to 0.79, the predictability
of Acc.PL from PRE.PL increased from 0.56 to 0.78. Since in both cases we are predicting the
same cell (Acc.pPL), it is not the case that the stem in one model had more information than in
the other model. What this shows is that the interaction between the predictor GEN.PL and the
stem carries less information about ACC.PL than the interaction between the stem and PRE.PL.

It is possible that the accuracy metrics are simply restating (with a normalized metric) the
same information that the information theoretic approach can already capture. The check this
we can explore the correlation between the analogical models and the conditional entropy
estimates as shown in Table 5.*. The overall correlation values for the three models and the
entropy model are shown in Table 4. The entropy model and the analogical model using
markers are very close to each other, while the analogical models with stem information are
less so. This result is important for two reasons. First, the fact that the entropy model and
the marker model capture very similar information means that, if we accept that entropy is a
valid metric, accuracy is in fact a valid alternative to quantify paradigm complexity. At the
same time, it is clear that adding stem information to the model does greatly change class
predictability.

model correlation

marker model -0.95
marker + phonology + semantics model -0.81

Table 4: Correlation with entropy values

Predictor
Predicted NOM.SG GEN.SG DAT.SG ACC.SG INS.SG PRE.SG NOM.PL GEN.PL DAT.PL ACC.PL INS.PL PRE.PL

NOM.SG 0.00 1.24 1.21 0.26 1.00 1.87 1.61 1.14 215 118 215 215
GEN.SG 0.88 0.00 0.43 0.77 0.68 1.30 0.95 1.02 1.74 0.78 174 1.74
DAT.SG 0.65 0.23 0.00 0.58 0.41 0.87 1.03 0.87 1.55 0.76 1.55 1.55
ACC.SG 0.65 1.52 1.53 0.00 1.34 219 1.99 1.55 250 1.04 250 2.50
INS.SG 0.74 0.78 0.71 0.69 0.00 1.40 1.48 0.95 1.93 1.03 193 1.93
PRE.SG 1.00 0.79 0.56 092 0.78 0.00 0.61 0.93 1.30 0.68 130 1.30
NOM.PL 1.24 0.93 1.22 1.22 136 1.11 0.00 1.18 1.70  0.36 170 1.70
GEN.PL 1.25 1.49 1.54 1.27 131 1.91 1.66 0.00 229 0.8 229 229
DAT.PL 0.14 0.09 0.09 0.09 0.18 0.16 0.07 0.17 0.00 0.07 0.00 0.00
ACC.PL 2.37 2.33 2.52 1.84 248 275 1.93 1.93 3.28 0.00 3.28 3.28
INS.PL 0.14 0.09 0.09 0.09 0.18 0.16 0.07 0.17 0.00 0.07 0.00 0.00
PRE.PL 0.14 0.09 0.09 0.09 0.18 0.16 0.07 0.17 0.00 0.07 0.00 0.00

Table 5: Conditional entropy on the Russian data-set

2 Concluding remarks

These results show that to solve the PCFP it is not enough to look at the information and
predictability between markers, nor is it enough to consider the class information hidden in
the stems. Both are necessary. I have shown that an analogical classifier based on a perceptron
can make use of stem and marker information. With this method we can measure predictability
between any number of cells, as well as making use predictors like semantic vectors, which are

*I calculated these following Ackerman & Malouf (2013)



hard to take into account with entropy-based approaches. Finally, this method allows us to
calculate accuracy metrics, which are normalized and allow for easy model comparison.
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